Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations

نویسندگان

  • Youhei Morinishi
  • Oleg V. Vasilyev
  • Takeshi Ogi
چکیده

A new finite difference scheme on a non-uniform staggered grid in cylindrical coordinates is proposed for incompressible flow. The scheme conserves both momentum and kinetic energy for inviscid flow with the exception of the time marching error, provided that the discrete continuity equation is satisfied. A novel pole treatment is also introduced, where a discrete radial momentum equation with the fully conservative convection scheme is introduced at the pole. The pole singularity is removed properly using analytical and numerical techniques. The kinetic energy conservation property is tested for the inviscid concentric annular flow for the proposed and existing staggered finite difference schemes in cylindrical coordinates. The pole treatment is verified for inviscid pipe flow. Mixed second and high order finite difference scheme is also proposed and the effect of the order of accuracy is demonstrated for the large eddy simulation of turbulent pipe flow. 2004 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An implicit finite difference scheme for analyzing the effect of body acceleration on pulsatile blood flow through a stenosed artery

With an aim to investigate the effect of externally imposed body acceleration on two dimensional,pulsatile blood flow through a stenosed artery is under consideration in this article. The blood flow has been assumed to be non-linear, incompressible and fully developed. The artery is assumed to be an elastic cylindrical tube and the geometry of the stenosis considered as time dependent, and a co...

متن کامل

High order conservative finite difference scheme for variable density low Mach number turbulent flows

The high order conservative finite difference scheme of Morinishi et al. [Y. Morinishi, O.V. Vasilyev, T. Ogi, Fully conservative finite difference scheme in cylindrical coordinates for incompressible flow simulations, J. Comput. Phys. 197 (2004) 686] is extended to simulate variable density flows in complex geometries with cylindrical or cartesian non-uniform meshes. The formulation discretely...

متن کامل

The Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates

In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...

متن کامل

Fully Conservative Higher Order Finite Difference Schemes for Incompressible Flow

Conservation properties of the mass, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discrete equations. Existing finite difference schemes in regular and staggered grid systems are checked for violations of the conservation requirements and a few important discrepancies are pointed out. In particular, it is found that ...

متن کامل

The Solution of Laminar Incompressible Flow Equation with Free Surfaces in Curvilinear Coordinates

In this paper a novel numerical approach is presented for solving the transient incompressible fluid flow problems with free surfaces in generalized two-dimensional curvilinear coordinate systems. Solution algorithm is a combination of implicit real-time steps and explicit pseudo-time steps. Governing fluid flow equations are discretized using a collocated finite-volume mesh. Convective terms a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003